Reducing microbial ureolytic activity in the rumen by immunization against urease therein

نویسندگان

  • Shengguo Zhao
  • Jiaqi Wang
  • Nan Zheng
  • Dengpan Bu
  • Peng Sun
  • Zhongtang Yu
چکیده

BACKGROUND Ureolytic activity of rumen bacteria leads to rapid urea conversion to ammonia in the rumen of dairy cows, resulting possible toxicity, excessive ammonia excretion to the environment, and poor nitrogen utilization. The present study investigated immunization of dairy cows against urease in the rumen as an approach to mitigate bacterial ureolytic activity therein. RESULTS Most alpha subunit of rumen urease (UreC) proteins shared very similar amino acid sequences, which were also highly similar to that of H. pylori. Anti-urease titers in the serum and the saliva of the immunized cows were evaluated following repeated immunization with the UreC of H. pylori as the vaccine. After the fourth booster, the vaccinated cows had a significantly reduced urease activity (by 17%) in the rumen than the control cows that were mock immunized cows. The anti-urease antibody significantly reduced ureolysis and corresponding ammonia formation in rumen fluid in vitro. Western blotting revealed that the H. pylori UreC had high immunological homology with the UreC from rumen bacteria. CONCLUSIONS Vaccine developed based on UreC of H. pylori can be a useful approach to decrease bacterial ureolysis in the rumen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in Ureolytic Bacterial Composition between the Rumen Digesta and Rumen Wall Based on ureC Gene Classification

Ureolytic bacteria are key organisms in the rumen producing urease enzymes to catalyze the breakdown of urea to ammonia for the synthesis of microbial protein. However, little is known about the diversity and distribution of rumen ureolytic microorganisms. The urease gene (ureC) has been the target gene of choice for analysis of the urea-degrading microorganisms in various environments. In this...

متن کامل

Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System

Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria community in the rumen. To explore the ruminal ureolytic bacterial community, urea, or acetohydroxamic acid (AHA, an inhibitor...

متن کامل

Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces.

A growth medium and test were developed for rapid detection of urease in fermentative anaerobic bacteria. Using nonselective rumen fluid roll-tube agar medium and the new test, it was confirmed that Peptostreptococcus productus is often the most numerous urease-forming species in human feces. Also, some fecal strains of Ruminococcus albus, Clostridium innocuum, and Clostridium beijerinckii prod...

متن کامل

Strain-specific ureolytic microbial calcium carbonate precipitation.

During a study of ureolytic microbial calcium carbonate (CaCO(3)) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO(3) crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differ...

متن کامل

Impact of Chestnut and Quebracho Tannins on Rumen Microbiota of Bovines

The use of phytogenic dietary additives is being evaluated as a means to improve animal productivity. The effect of tannins seems to be the influence not only directly on the digestive process through binding of dietary proteins but also indirectly over their effects on gastrointestinal microbiota. High-throughput sequencing of 16S rRNA gene was used to analyze the impact of dietary supplementa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015